Let's start off with scientific notation...

1a)	54,67 0,000,000	\rightarrow 5.467x10 ¹⁰	(original value was greater than [1], so positive exponent)
1b)	-5526.7	\rightarrow -5.5267x10 ³	(original value was greater than 1 , so positive exponent)
1c)	0.03289	\rightarrow 3.289x10 ⁻²	(original value was less than 1 , so negative exponent)
1d)	100.00	$\rightarrow 1.0000 \text{x} 10^2$	(original value was greater than 1 , so positive exponent)
1e)	-0.000093740	\rightarrow -9.3740x10 ⁻⁵	(original value was less than 1 , so negative exponent)
1f)	9999.606	\rightarrow 9.999606x10 ³	(original value was greater than 1 , so positive exponent)
1g)	28 00	$\rightarrow 2.8 \text{x} 10^3$	(original value was greater than 1 , so positive exponent)
1h)	-0.00000005883	\rightarrow -5.883x10 ⁻⁸	(original value was less than 1 , so negative exponent)
1i)	0.00008	$\rightarrow 8 \times 10^{-5}$	(original value was less than 1 , so negative exponent)
1j)	0.11250	$\rightarrow 1.1250 \mathrm{x} 10^{-1}$	(original value was less than 1 , so negative exponent)

How many significant figures in a number:

2a)	<mark>62</mark> 00	\rightarrow	2
2b)	1.032	\rightarrow	4
2c)	420.	\rightarrow	<mark>3</mark>
2d)	3.750×10^{-6}	\rightarrow	4
	0.0006000	\rightarrow	4
	1×10^4	\rightarrow	1
2g)	35000000	\rightarrow	2
2h)	23.4400	\rightarrow	6
2i)	100.0003	\rightarrow	7
2J)	100.	\rightarrow	3

Significant figures in calculations 3a) $160 \times 0.3490 \times 23.1 = 1289.904$ $160 = 2 \text{ s.f.}, 0.3490 = 4 \text{ s.f.}, 23.1 = 3 \text{ s.f.}, \text{ so answer can only have } 2 \text{ s.f.} \rightarrow 1300 \text{ or } 1.3 \times 10^3$ 2.3806 +0.012.3906 $\rightarrow 2.39$ 3b) $\frac{0.2689}{0.000159} = 1691.19497$ $0.2689 = 4 \text{ s.f.}, 0.000159 = 3 \text{ s.f.}, \text{ answer has } 3 \text{ s.f.} \rightarrow 1690 \text{ or } 1.69 \times 10^3$ 3c) 3b) 113 93 $\rightarrow 9$ $1500. \div 25 = 60$ $1500. = 4 \text{ s.f.}, 25 = 2 \text{ s.f.}, \text{ answer has } 2 \text{ s.f.} \rightarrow 60. \text{ or } 6.0 \times 10^1$ 3e) $3.65 \times 10^{-3} \times 9.822 \times 10^{4} = 360.693$ $3.65 \times 10^{-3} = 3 \text{ s.f.}, 9.822 \times 10^{4} = 4 \text{ s.f.}, \text{ answer has } 3 \text{ s.f.} \rightarrow 361$ 3f) $\frac{2.21100 \times 10^2}{32.1 \times 0.002000} = 3443.92523$ 2.21100x10² = 6 s.f., 32.1 = 3 s.f., 0.002000 = 4 s.f., answer = 3 s.f. \rightarrow 3440 3g) OR 3.44x10³ 3h)

$$\begin{array}{c} 0.34864 \\ +1 \\ \hline 1.34864 \end{array} \rightarrow 1 \text{ (this is the answer)} \\ \hline 26.1 \\ - .00030000 \\ \hline 26.09970000 \end{array} \rightarrow 26.1 \text{ (you are subtracting a very small number from a large number; it doesn't make a difference here)} \\ \hline 1200 \\ + 9.49 \\ + 1.004 \\ \hline 1250.494 \qquad 12[50.494 = 1.2]50494 \times 10^3 \rightarrow 1.3 \times 10^3 \qquad (again, put into scientific notation THEN round off) \end{array}$$

3i)

3j)

3k) $33.3 \times 3.0 = 99.9$ 33.3 = 3 s.f., 3.0 = 2 s.f., answer = 2 s.f. 99.9 rounds to 100, but MUST have 2 s.f. \rightarrow 1.0x10²